$${\rm{If}}\,{\log _x}\left( {{9 \over {16}}} \right) = - {1 \over 2},\,{\rm{then}}\,x\,{\rm{is}}\,{\rm{equal}}\,{\rm{to:}}$$
$${\rm{If}}\,{\log _x}\left( {{9 \over {16}}} \right) = - {1 \over 2},\,{\rm{then}}\,x\,{\rm{is}}\,{\rm{equal}}\,{\rm{to:}}$$
If ax = by, then:
If ax = by, then:
If log 2 = 0.3010 and log 3 = 0.4771, the value of log5 512 is:
If log 2 = 0.3010 and log 3 = 0.4771, the value of log5 512 is:
$${\rm{If}}\log {a \over b} + \log {b \over a} = \log \left( {a + b} \right),{\rm{then:}}$$
$${\rm{If}}\log {a \over b} + \log {b \over a} = \log \left( {a + b} \right),{\rm{then:}}$$
If log10 5 + log10 (5x + 1) = log10 (x + 5) + 1, then x is equal to:
If log10 5 + log10 (5x + 1) = log10 (x + 5) + 1, then x is equal to:
The value of log2 16 is:
The value of log2 16 is:
$${{\log \sqrt 8 } \over {\log 8}}$$ is equal to:
$${{\log \sqrt 8 } \over {\log 8}}$$ is equal to:
If logx y = 100 and log2 x = 10, then the value of y is:
If logx y = 100 and log2 x = 10, then the value of y is:
If log 2 = 0.30103, the number of digits in 264 is:
If log 2 = 0.30103, the number of digits in 264 is:
$${\rm{If}}{\kern 1pt} \,{\kern 1pt} {\log _{10}}7 = a,{\kern 1pt} {\kern 1pt} {\rm{then}}\,{\kern 1pt} {\kern 1pt} {\log _{10}}\left( {{1 \over {70}}} \right){\rm{is}}\,{\kern 1pt} {\rm{equal}}\,{\kern 1pt} {\rm{to}}$$
$${\rm{If}}{\kern 1pt} \,{\kern 1pt} {\log _{10}}7 = a,{\kern 1pt} {\kern 1pt} {\rm{then}}\,{\kern 1pt} {\kern 1pt} {\log _{10}}\left( {{1 \over {70}}} \right){\rm{is}}\,{\kern 1pt} {\rm{equal}}\,{\kern 1pt} {\rm{to}}$$
If log10 2 = 0.3010, the value of log10 80 is:
If log10 2 = 0.3010, the value of log10 80 is:
$$\eqalign{
& {\text{The}}{\kern 1pt} {\text{value}}{\kern 1pt} {\text{of}} \cr
& \left( {\frac{1}{{{{\log }_3}60}} + \frac{1}{{{{\log }_4}60}} + \frac{1}{{{{\log }_5}60}}} \right){\text{is}}: \cr} $$
$$\eqalign{
& {\text{The}}{\kern 1pt} {\text{value}}{\kern 1pt} {\text{of}} \cr
& \left( {\frac{1}{{{{\log }_3}60}} + \frac{1}{{{{\log }_4}60}} + \frac{1}{{{{\log }_5}60}}} \right){\text{is}}: \cr} $$
If log10 2 = 0.3010, then log2 10 is equal to:
If log10 2 = 0.3010, then log2 10 is equal to:
Which of the following statements is not correct?
Which of the following statements is not correct?
If log 27 = 1.431, then the value of log 9 is:
If log 27 = 1.431, then the value of log 9 is: